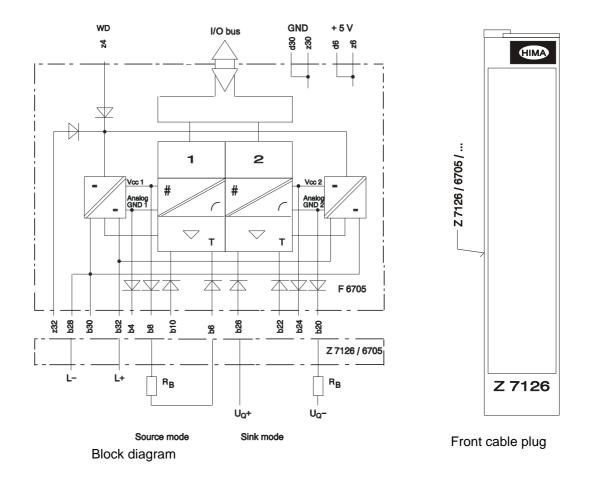


F 6705


TOV TOV Theinland FS

F 6705: 2-channel converter digital/analog

safety-related, applicable up to SIL 3 according to IEC 61508

- Outputs: 0/4...20 mA, individual electrical isolation
- with safe isolation
- with integrated safety shutdown
- for source or sink mode

1 Overview

Figure 1: Block diagram and front cable plug

The module is automatically fully tested during operation by applying of test values with signal duration < 1ms. The main test routines are:

- Linearity of the D/A converter
- Cross-talk between the outputs

 Safety shutdown Resolution

12 bits (4095 steps) 0 = 0 mA, 3840 = 20 mA, 4095 = 21.3 mA

Burden R _B	
source mode	\leq 550 Ω incl. line resistance to the burden
sink mode	\leq (U _Q - 10 V) / 21.3 mA
	U _Q = source voltage
Basic error	≤ 0.2 % (40 μA) at 25 °C
Operating error	≤ 0.4 % at 0+60 °C
Line length	max. 1000 m (observe burden)
Electric strength	250 V against Analog GND
Basic status with	0 0
plug-in	$I \leq 40 \ \mu A$
Source voltage U _O	
(sink mode)	1030 V
Space requirement	4 SU
Operating data	5 VDC / 85 mA, 24 VDC / 130 mA

Chan- nel	Connec- tion	Colour	Cable LiYCY
1	b8	WH	8 x 0.5 mm ²
	b6	BN	
	b4	PK	
	b10	GY	
2	b24	GN	l = 750 mm
	b22	YE	$q = 1 \text{ mm}^2$
	b20	RD	
	b26	BU	Flat pin
L–	b28	BK	plug
L+	b32	RD	2.8 x 0.8 mm ²
Cable s	creen	YEGN	l = 120 mm
L.			$q = 2.5 \text{ mm}^2$
			\sqrt{E}

Flat pin plug 6.3 x 0.8 mm (of the cable screen), to be connected to the earth bar under the slot

Lead marking cable plug Z 7126 / 6705 / C..

Note: To prevent module error messages, not used channels have to be terminated with a jumper

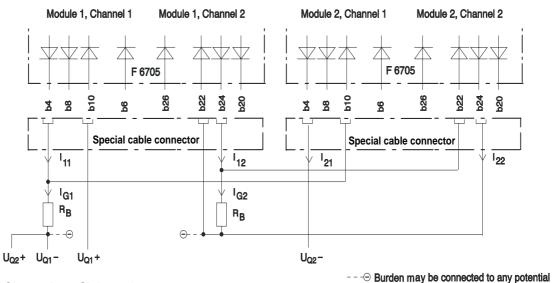

	b6 - b8	for channel 1
or	b22 - b24	for channel 2.

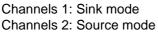
Figure 2: Lead marking cable plug

Note At use of the module with external devices (e.g. chart recorder) the compatibility with test values with signal duration < 1ms at the outputs has to be checked.

2 Current connections

2.1 Redundant current connection


Figure 3: Redundant current connection


With redundant current connection, the following must be considered:

- The total current I_{G1} resp. I_{G2} to the burden R_B is the addition of the individual currents I_{11} and I_{21} resp. I_{12} and I_{22} .
- The admissible burden resistance is half the value.
- The paralleled channels have to be used in the same mode (source or sink mode).
- Because of the temperature error and of the wanted well-balanced load of the modules each output channel should generate the half of the current I_G to the burden.

Note	If one of the two redundant modules is switched off caused by an error, only half the current is delivered at the output (from <i>one</i> module), in the worst case for a maximum of two cycles.
	With the connection of a replaced module twice the current may be delivered for a maximum of one cycle.

2.2 Bipolar current connection

Figure 4: Bipolar current connection

The bipolar current connection serves the output of currents with sign between -20 mA to +20 mA. The following must be considered:

- The total current is the addition of the individual currents
- $I_{G1} = I_{11} I_{21}$ or $I_{G2} = I_{12} I_{22}$.
- The admissible burden resistance remains the same.
- Module 1 generates the positive part and module 2 the negative part of the total current.
- For reason of accuracy only one module may generate or consume current. This must be regarded in the user program.

2.3 Current outputs

Resolution in the range 0/4 - 20 mA

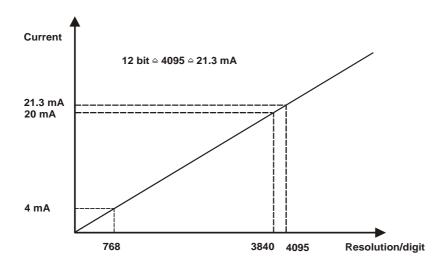


Figure 5: Current outputs